Modélisation statistique
Code UE : STA110
- Cours
- 9 crédits
- Volume horaire de référence
(+ ou - 10%) : 70 heures
Responsable(s)
Vincent AUDIGIER
Public, conditions d’accès et prérequis
Avoir le niveau de l'unité d'enseignement : STA. 103 (calcul des probabilités) et STA001 (Techniques de la statistique)
L'avis des auditeurs
Les dernières réponses à l'enquête d'appréciation pour cet enseignement :
Objectifs pédagogiques
Maîtriser les outils de la modélisation statistique (sélection de modèles, validation, interprétation) dans un contexte général (données continues, discrètes, qualitatives, mixtes) via l'utilisation de méthodes paramétriques (modèles linéaires et modèle linéaire généralisé) ou non-paramétriques.
Acquérir des connaissances ainsi qu'un savoir-faire dont l'objectif est de traiter un problème concret par une approche de modélisation (applications à des données réelles).
Mettre en œuvre cette modélisation à l'aide d'un logiciel de modélisation statistique avancé (logiciel R) et savoir interpréter les résultats obtenus.
Acquérir des connaissances ainsi qu'un savoir-faire dont l'objectif est de traiter un problème concret par une approche de modélisation (applications à des données réelles).
Mettre en œuvre cette modélisation à l'aide d'un logiciel de modélisation statistique avancé (logiciel R) et savoir interpréter les résultats obtenus.
Compétences visées
Statisticien modélisateur
Contenu
I) Méthodes paramétriques
Régression linéaire simple et multiple : modèle, moindres carrés, estimations, intervalles de confiance, tests, colinéarité, sélection de variables, validation, prédiction, interprétation. Recherche de points (aberrants, influents, atypiques et de points leviers).
Analyse de la Variance : à 1 facteur (mesures indépendantes, répétées) et à 2 facteurs (mesures indépendantes)
Analyse de la Covariance (modèles, comparaison à la régression linéaire et à l'ANOVA à 1 facteur à mesures indépendantes, paradoxe de Lord)
Régression logistique : modèle probit et logit, estimations, tests, sélection de modèles, validation, prédiction.
Modèle linéaire généralisé (regression de Poisson, modèle polytomique)
Introduction à la modélisation Bayésienne
Introduction à l'analyse de séries temporelles
II) Méthodes non-paramétriques
Régression spline
Estimateurs par moyennes locales (estimateurs à noyau)
Régression polynomiale locale
L'enseignement comporte une initiation au logiciel R et une mise en oeuvre de ce logiciel dans diverses applications.
Régression linéaire simple et multiple : modèle, moindres carrés, estimations, intervalles de confiance, tests, colinéarité, sélection de variables, validation, prédiction, interprétation. Recherche de points (aberrants, influents, atypiques et de points leviers).
Analyse de la Variance : à 1 facteur (mesures indépendantes, répétées) et à 2 facteurs (mesures indépendantes)
Analyse de la Covariance (modèles, comparaison à la régression linéaire et à l'ANOVA à 1 facteur à mesures indépendantes, paradoxe de Lord)
Régression logistique : modèle probit et logit, estimations, tests, sélection de modèles, validation, prédiction.
Modèle linéaire généralisé (regression de Poisson, modèle polytomique)
Introduction à la modélisation Bayésienne
Introduction à l'analyse de séries temporelles
II) Méthodes non-paramétriques
Régression spline
Estimateurs par moyennes locales (estimateurs à noyau)
Régression polynomiale locale
L'enseignement comporte une initiation au logiciel R et une mise en oeuvre de ce logiciel dans diverses applications.
Modalité d'évaluation
L'évaluation se fera uniquement sous la forme de projets consistant en l'application des différentes méthodes de modélisation sur des données réelles.
Bibliographie
- CAMERON, TRIVEDI : Regression analysis of count data models (Cambridge University Press)
- HAMILTON : Time series analysis (Princeton University Press)
- Azaïs J-M., Bardet J-M : Le modèle linéaire par l’exemple (Dunod)
- Cornillon P., Matzner-Lober, E. : Régression linéaire : Théorie et applications (Statistiques et probabilités appliquées))
- , Cornillon, PA, Guyader, A., Husson, F., Jégou, N., Josse, J., Kloareg, M., Matzner-Lober, E., Rouvière, L. : Statistiques avec R (PUR)
- J.J. Daudin, S. Robin, C. Vuillet : Statistique inférentielle : idées, démarches, exemples. (PUR)
- Prum, B. : Modèle linéaire, Comparaison de groupes et régression (Les Editions INSERM)
- G. Saporta : Probabilités, Analyse des données et Statistiques (Technip)
Cette UE apparaît dans les diplômes et certificats suivants
Rechercher une formation
Chargement du résultat...

Intitulé de la formation |
Type |
Modalité(s) |
Lieu(x) |
|
---|---|---|---|---|
Intitulé de la formation
Certificat de compétence Statistique pour la finance
|
||||
Lieu(x)
À la carte
|
Lieu(x)
Liban, Paris
|
|||
Lieu(x)
À la carte
|
Lieu(x)
Paris
|
|||
Intitulé de la formation | Type | Modalité(s) | Lieu(x) |
Contact
EPN06 Mathématiques et statistiques
2 rue conté Accès 35 3 ème étage porte 19
75003 Paris
Sabine Glodkowski
2 rue conté Accès 35 3 ème étage porte 19
75003 Paris
Sabine Glodkowski
Voir le site
Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.
UE
-
-
Paris
-
Centre Cnam Paris
Comment est organisée cette formation ?
Organisation de la modalité FOAD 100%
Planning
Aucun planning pour le moment
Précision sur la modalité pédagogique
- Regroupements physiques facultatifs : Aucun
:Organisation du déploiement de l'unité
- Nombre d'élèves maximum à distance par classe : 40
- Nombre d'heures d'enseignement par élève : 77
- Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)
Modes d'animation de la formation
- Forum
- Messagerie intégrée à la plateforme
- Visioconférence
- Outils numériques de travail collaboratif
- Organisation d'une séance de démarrage
- Evaluation de la satisfaction
- Hot line technique
Ressources mises à disposition sur l'Espace Numérique de Formation
- Documents de cours
- Enregistrement de cours
- Documents d'exercices, études de cas ou autres activités pédagogiques
- Bibliographie et Webographie
Activités "jalons" de progression pédagogique prévues sans notation obligatoire à rendre ou en auto-évaluation
- 2 études de cas, projets collectifs
- 1 étude de cas, projet individuel
Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)
- Oraux par visioconférence
- Projet(s) individuel(s)
- Projet(s) collectif(s)
-
Liban
-
Liban
- 2023-2024 1er semestre : Présentiel soir ou samedi
-
Liban
-
Centre Cnam Paris
-
Paris
Code UE : STA110
- Cours
- 9 crédits
- Volume horaire de référence
(+ ou - 10%) : 70 heures
Responsable(s)
Vincent AUDIGIER