Données multimédia et spatio-temporelles

Code UE : NFE205

  • Cours + travaux pratiques
  • 6 crédits
  • Volume horaire de référence
    (+ ou - 10%) : 50 heures

Responsable(s)

Marin FERECATU

Public, conditions d’accès et prérequis

Prérequis : M1 ou bac + 4 et NFE204 ou équivalent
Public : cycle d'ingénieur CNAM, Master M2

Présence et réussite aux examens

Pour l'année universitaire 2022-2023 :

  • Nombre d'inscrits : 16
  • Taux de présence à l'évaluation : 56%
  • Taux de réussite parmi les présents : 100%

Objectifs pédagogiques

La gestion et l'exploitation des données multimédia et spatio-temporelles ont une grande importance dans des domaines aussi variés que l'audiovisuel, l'exploitation de données scientifiques, l'imagerie médicale, le tourisme, la planification urbaine, l'étude du climat, le marketing ou la sécurité.
Les données multimédia et spatio-temporelles sont souvent peu structurées et très volumineuses, la technologie relationnelle est insuffisante ou inadaptée pour leur gestion. De plus, des opérations de recherche de nature différente sont nécessaires afin d'accéder à l'information présente par ex. dans des contenus visuels (BD multimédia) ou vectoriels (BD spatiales).
L'objectif de cet enseignement est de faire comprendre les principes et les technologies actuelles de gestion et de recherche dans des données multimédia et spatio-temporelles. Les travaux pratiques doivent permettre une familiarisation avec une partie des techniques abordées dans le cours.

Compétences visées

Maîtrise des enjeux et défis pour les nouveaux marchés liés à la gestion de gros volumes de données non traditionnelles (notamment grandes bases de données multimédia : image, vidéo, son, capteurs), pour lesquels la technologie relationnelle est insuffisante.

Contenu

Thèmes abordés dans le cours et les travaux pratiques (TP) :
  • Spécificités des bases de données multimédia et des bases spatio-temporelles, domaines d'application.
  • Données image, audio et vidéo : description, traitement, stockage, structuration et outils disponibles
  • Données spécifiques : données médicales, satellite, aériennes, séries temporelles, anthropométriques (empreintes, iris, etc.), graphe
  • Bases de données spatiales et spatio-temporelles : modèle de données, structures d'index, produits du marché, applications.
  • Paradigmes et méthodes spécifiques de recherche d'information multimédia : recherche par le contenu, recherche multi-modale, méthodes par apprentissage
  • Passage à l'échelle de la recherche par similarité
  • Introduction à l'intelligence artificielle pour des données multimédia
Les TP permettent d'élargir, détailler et de mettre en œuvre certaines techniques vues en cours.

Modalité d'évaluation

Examen terminal et projet.

Bibliographie

  • Akka Zemari, Jenny Benois-Pineau : Deep Learning in Mining of Visual Content, 2020
  • John W. Woods : Multidimensional Signal, Image, and Video Processing and Coding, 2011
  • Chloé-Agathe Azencott : Introduction au Machine Learning, 2019
  • Paul A. Longley et al. : Geographic Information Systems and Science, 2010

Cette UE apparaît dans les diplômes et certificats suivants

Contact

EPN05 - Informatique
292 rue saint Martin 33.1.13B
75003 Paris
Tel :01 40 27 22 64
Florian Gau

Voir le calendrier, le tarif, les conditions d'accessibilité et les modalités d'inscription dans le(s) centre(s) d'enseignement qui propose(nt) cette formation.

UE

    • Paris
      • Paris
        • 2024-2025 1er semestre : Formation ouverte et à distance (FOAD)
        • 2025-2026 1er semestre : Formation ouverte et à distance (FOAD)
        • 2026-2027 1er semestre : Formation ouverte et à distance (FOAD)
        Comment est organisée cette formation ?
        2024-2025 1er semestre : Formation ouverte et à distance

        Dates importantes

        • Période des séances du 16/09/2024 au 18/01/2025
        • Période d'inscription : du 10/06/2024 à 10:00 au 18/10/2024 à 23:59
        • Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
        • Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF

        Précision sur la modalité pédagogique

        • Une formation ouverte et à distance (FOAD) est une formation dispensée 100% à distance, qui peut être suivie librement, à son rythme.
        • Regroupements physiques facultatifs : Aucun

        Organisation du déploiement de l'unité

        • Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)

        Modes d'animation de la formation

        • Forum
        • Messagerie intégrée à la plateforme
        • Visioconférence
        • Organisation d'une séance de démarrage
        • Evaluation de la satisfaction
        • Hot line technique

        Ressources mises à disposition sur l'Espace Numérique de Formation

        • Documents de cours
        • Enregistrement de cours
        • Documents d'exercices, études de cas ou autres activités pédagogiques
        • Bibliographie et Webographie

        Activités "jalons" de progression pédagogique prévues sans notation obligatoire à rendre ou en auto-évaluation

        • TP

        Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)

        • Examens présentiels dans un centre habilité
        • Examens en ligne
        • Projet(s) individuel(s)